Some Computational Results for Dual-Primal FETI Methods for Elliptic Problems in 3D
نویسندگان
چکیده
Iterative substructuring methods with Lagrange multipliers for elliptic problems are considered. The algorithms belong to the family of dual-primal FETI methods which were introduced for linear elasticity problems in the plane by Farhat et al. [2001] and were later extended to three dimensional elasticity problems by Farhat et al. [2000]. Recently, the family of algorithms for scalar diffusion problems was extended to three dimensions and successfully analyzed by Klawonn et al. [2002a,b]. It was shown that the condition number of these dual-primal FETI algorithms can be bounded polylogarithmically as a function of the dimension of the individual subregion problems and that the bounds are otherwise independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. In this article, numerical results for some of these algorithms are presented and their relation to the theoretical bounds is studied. The algorithms have been implemented in PETSc, see Balay et al. [2001], and their parallel scalability is analyzed.
منابع مشابه
Dual-Primal FETI Methods for Three-Dimensional Elliptic Problems with Heterogeneous Coefficients
In this paper, certain iterative substructuring methods with Lagrange multipliers are considered for elliptic problems in three dimensions. The algorithms belong to the family of dual{ primal FETI methods which have recently been introduced and analyzed successfully for elliptic problems in the plane. The family of algorithms for three dimensions is extended and a full analysis is provided for ...
متن کاملSelecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions
Iterative substructuring methods with Lagrange multipliers for the elliptic system of linear elasticity are considered. The algorithms belong to the family of dual-primal FETI methods which was introduced for linear elasticity problems in the plane by Farhat et al. [2001] and then extended to three dimensional elasticity problems by Farhat et al. [2000]. In dual-primal FETI methods, some contin...
متن کامل3. Dual and Dual-Primal FETI Methods for Elliptic Problems with Discontinuous Coefficients in Three Dimensions
The Finite Element Tearing and Interconnecting (FETI) methods were first introduced by Farhat and Roux [FMR94]. An important advance, making the rate of convergence of the iteration less sensitive to the number of unknowns of the local problems, was made by Farhat, Mandel, and Roux a few years later [FMR94]. For a detailed introduction, see [FR94] and we also refer to our own papers for many ad...
متن کاملA Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods
In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...
متن کاملHighly Scalable Parallel Domain Decomposition Methods with an Application to Biomechanics
Highly scalable parallel domain decomposition methods for elliptic partial differential equations are considered with a special emphasis on problems arising in elasticity. The focus of this survey article is on Finite Element Tearing and Interconnecting (FETI) methods, a family of nonoverlapping domain decomposition methods where the continuity between the subdomains, in principle, is enforced ...
متن کامل